Square of Any Number of Digits
ab^2 = a*(ab+b) | b^2
•Where a & b represents digits, 'ab' does not mean a times b.
•b can be more than one digit.
•Number of zeros of base determines number of digits of b^2, excess digit will be added to the preceding number.
Base 10:
12^2 = 1*(12+2) | 2^2
= 14 | 4 = 144
Base 20:
21^2 = 2*(21+1) | 1^2
= 44 | 1 = 441
Base 30:
31^2 = 3*(31+1) | 1^2
= 96 | 1 = 961
Base 40:
42^2 = 4*(42+2) | 2^2
= 176 | 4 = 1764
and so on...
Base 100:
112^2 = 1*(112+12) | 12^2
= 124 | 144
= 124+1 | 44
= 12544
Base 200:
213^2 = 2*(213+13) | 13^2
= 2*(226) | 169
= 452+1 | 69
= 45369
Base 300:
308^2 = 3*(308+8) | 8^2
= 3*(316) | 64
= 94864
and so on...
Base 1 000 000 000:
1000001012^2 = ?
= 1*(1000001012+1012) | 1012^2
= 1000002024 | 1024144
= 1000002024001024144
#Matamata
No comments:
Post a Comment